
Scaling Multi-Agent Reinforcement Learning via
State Upsampling

Luis Pimentel1,∗, Rohan Paleja1,∗, Zheyuan Wang1, Esmaeil Seraj1, James E. G. Pagan2, and Matthew Gombolay1
1Atlanta, GA, USA, 2Albuquerque, NM, USA

1Georgia Institute of Technology, 2Sandia National Laboratories
{lpimentel3, rohan.paleja, pjohnwang, eseraj3}@gatech.edu, jepagan@sandia.gov, matthew.gombolay@cc.gatech.edu

Abstract—We consider the problem of scaling Multi-Agent
Reinforcement Learning (MARL) algorithms toward larger en-
vironments and team sizes. While it is possible to learn a
MARL-synthesized policy on these larger problems from scratch,
training is difficult as the joint state-action space is much larger.
Policy learning will require a large amount of experience (and
associated training time) to reach a target performance. In this
paper, we propose a transfer learning method that accelerates
the training performance in such high-dimensional tasks with
increased complexity. Our method upsamples an agent’s state
representation in a smaller, less challenging, source task in order
to pre-train a target policy for a larger, more challenging, target
task. By transferring the policy after pre-training and continuing
MARL in the target domain, the information learned within the
source task enables higher performance within the target task in
significantly less time than training from scratch. As such, our
method enables the scalability of coordination problems. Fur-
thermore, as our method only changes the state representation of
agents across tasks, it is agnostic to the policy’s architecture and
can be deployed across different MARL algorithms. We provide
results showing that a policy trained under our method is able
to achieve up to a 7.88× performance improvement under the
same amount of training time, compared to a policy trained from
scratch. Moreover, our method enables learning in difficult target
task settings where training from scratch fails.

I. INTRODUCTION

Many real world domains including traffic control [7], sen-
sor networks [28, 20], and Search and Rescue (SAR) [17] can
be modeled as Multi-Agent Systems (MAS), where multiple
agents must individually make decisions in a decentralized
fashion to achieve high-performance collaboration [31]. Col-
laboration in these domains can greatly improve performance
and task efficiency, and is often a required step to accomplish
an overarching mission successfully [21]. However, learning
high-performance team coordination strategies proves difficult
due to the non-stationarity and credit-assignment problems [5].
Several MARL algorithms have been developed to overcome
these challenges through the use of fully observable critics
[12, 13, 5], value function factorization [24, 18], and commu-
nication [4, 3, 22, 23, 15, 21].

These algorithms have made significant advancements in
MARL; however, challenges remain in scaling these algo-
rithms to domains with larger environments and larger num-
bers of agents. Learning high-performance coordination poli-
cies in larger tasks is difficult due to the increasing joint
state-action space that agents must explore, resulting in an

increasingly complex credit-assignment problem [5] and a
large variance of policy gradients during training [12]. More
practically, often, training a MARL algorithm in these high-
complexity configurations requires increased training time and
high-performance computational resources. As the complexity
of the problem increases, the computational effort required to
learn a policy grows exponentially [6]. Our goal is to enable
efficient training of MARL policies in high-dimensional and
high-complexity problem configurations, by re-using knowl-
edge learned from training in simpler configurations.

Previous work in scaling/varying the number of agents
includes approaches that enable transfer through the use of
Curriculum Learning and Evolutionary Learning [11], Graph
Neural Network architectures [29], Transformer architectures
[9, 32], and task representation learning [16]. However, these
methods rely on an algorithm and/or specific architecture
to enable performance improvements when transferring to
new MARL tasks. Furthermore, these works do not explore
transferring to larger environment sizes.

In this work, we propose an upsampling method to enable
efficient training of a policy for a target MARL task with
larger environment size and increased number of agents. In
our method, we first pre-train the target policy on a source task
with a smaller environment size and fewer agents. Once this
policy has converged, we transfer to the target configuration.
To achieve this, we propose a tensor-based state representation
of agents and perform upsampling on the states to achieve a
state representation of equal dimensions in both source and
target tasks. Through our state upsampling method, we are
able to transfer spatial knowledge to the target domain and
achieve greater performance significantly faster than training
from scratch. Our contributions are as follows:

1) We design a novel and efficient upsampling methodol-
ogy that can be applied to MARL problems to upscale
both the domain size and number of agents.

2) We ground our upsampling methodology within a
POMDP formulation and provide a detailed description
of how our method can be applied across various MARL
frameworks and domains.

3) We present empirical evidence that our proposed method
reduces aggregate training time of three published
MARL frameworks, displaying its utility across both
homogeneous and heterogeneous domains.



II. RELATED WORK

In this section, we discuss several MARL frameworks and
prior approaches in transfer learning.

MARL Frameworks – The goal of MARL is to learn high-
performance collaboration among agents via RL techniques.
Recent works in MARL have considered problem settings
where agents in the environment are allowed to communicate
with each other in order to increase performance. In this
setting, agents send messages to each other and integrate their
received messages in order to make decisions [3, 22, 23, 15,
21]. Our work focuses on augmenting these frameworks with
our upsampling method to increase training efficiency in more
complex environments.

Transfer Learning – One technique to scale reinforcement
learning is through transfer learning, which utilizes knowledge
learned in one task to improve performance on a different
but related task [27]. Within transfer learning for MARL,
proposed techniques have included Intra-Agent Transfer [2],
where an agent’s knowledge is reused on a new task, and
Curriculum Learning (CL), where learning is first done on an
easier task and then transferred to more difficult target tasks.
Our approach can be classified as a policy transfer/policy reuse
technique, where knowledge is transferred by building a target
policy from pre-trained source policies [33].

Tensor-Based State Representation – Tensor-based repre-
sentations are ideal for cross-task state representations. Several
works in MARL [1, 8, 19] utilize a tensor-based state repre-
sentation for representing multiple agents within a grid. Han
et al. [8] considers using a tensor-based state representation to
transfer their MARL policy across team sizes by implementing
per-grid policies. However, they are unable to transfer policies
to larger environment scales as their method is dependent on
their encoder-decoder architecture. The closest related work
to ours is Schwab et al. [19], which also provides results
transferring a policy trained on a small domain with few
agents to a larger domain with more agents. However, their
MARL formulation uses a fully-observable MDP, while ours is
a POMDP augmented with message communication between
agents to mitigate partial observability. To the best of our
knowledge, we are the first to propose an upsampling-based
method on MARL state representations that allows transferring
a learned MARL policy across tasks (both varying in domain
size and number of agents), and that can be integrated to
benefit any existing training algorithms.

III. PROBLEM FORMULATION

We model the learning process as a Multi-Agent Partially
Observable Markov Decision Process (MA-POMDP) [10].
This can be represented as a tuple

〈
N , S, O, A, T , r, γ

〉
.

Here, N is the number of agents, S = {×iSi}Ni=1 is the
joint set of agent state-spaces. Note that this joint state-
space increases linearly as the environment size becomes
larger and exponentially as the number of agents in the
environment increases. O = {×iOi}Ni=1 is the joint set
of agent observation-spaces, A = {×iAi}Ni=1 is the joint
set of agent action-spaces, and T is the probability density

function defining agent state transitions: T : S × A 7→ S .
At each time-step t, agents can receive an observation, oit,
from the environment. Regardless of an agent having received
an observation, at each time-step t, all agents in the joint
state s̄t =

[
sit
]
∈ S take an action forming a vector of

joint actions āt =
[
ait
]
∈ A. At the next joint state s̄t+1, all

agents received an individual immediate reward rt(sit, a
i
t). Our

objective is to learn an optimal policy, π∗
i (s

i
t) : S 7→ A, that

maximizes the total expected, discounted reward accumulated
by an agent such that πi∗(sit) = argmax

πi(sit)
Eπi(sit)

[
Rt |πi(sit)

]
where Rt =

∑∞
k=0 γ

krt+k and γ is the the temporal discount
factor for each unit of time.

IV. METHOD

In this work, we define the target task as a challenging
environment configuration and seek to accelerate the learning
of a policy that is trained under the target task’s difficult
environment settings. Accordingly, we define this policy as the
target policy. Furthermore, we define the source task as a less
challenging environment configuration, under which we can
pre-train the target policy in order to rapidly learn knowledge
that can be used to warm-start learning in the more challenging
target task. This involves transferring a coordination policy
learned in a small domain with few agents to a large domain
with more agents. In our MARL formulation with communica-
tion, an agent’s available information at each time-step consists
of its state (e.g., an agent’s current location) and observation
(e.g., positions of other agents and/or entities within a limited
vision). An agent’s state can be represented by its position
in a one-hot encoded matrix, of which the dimensions are
determined by the size of the environment. Therefore, directly
transferring a policy from a smaller environment to a larger
one is not possible as the dimensions of the state representation
in the small environment are unequal to that in the larger
environment. In the following sections, we explain how we
utilize upsampling to enable this transfer.

A. State Upsampling Transformation

We transform the state representations of each agent in the
source task, sit ∈ Rp×p, to a state representation, zit ∈ Rq×q ,
that can then be used to pre-train the target policy, πtarget

i , on
the source task. Here, p is the length of the source task’s envi-
ronment, and q is the length of the target task’s environment.
Our only assumptions are that the state can be represented
by a matrix in both tasks, and that q > p. For our state
transformation operator, ϕ : Rp×p 7→ Rq×q , we utilize nearest-
neighbor upsampling interpolation [26], with an upsampling
factor, f = q

p . In this operation, one cell in sit, becomes an
f × f grid of cells in the target state representation zit, with
each cell having the same feature value as in the sit cell. This
is repeated for all cells in sit to form the upsampled target
state representation, zit. This upsampling can be visualized in
Figure 1, where a 5x5 state representation is transformed to a
10x10 state representation via state upsampling. We note that
while our method is limited to grid-world state representation,



Fig. 1: Visual of our transfer method. Our SUMA-POMDP
formulation is deployed on a 5 × 5 source task to enable
transferring the target policy to a 10× 10 target task.

it is not limited to environments with equal dimensions. We
leave this to future work.

B. State-Upsampled Multi-Agent POMDP (SUMA-POMDP)

The learning processes of the source and target tasks can
be modeled by the MA-POMDP formulation introduced in
Section III. As policy learning in the source task is much
easier, requiring less environment experience and training
times, we pre-train the target policy on a source task using
a State-Upsampled Multi-Agent POMDP (SUMA-POMDP)
represented as the tuple

〈
N , ϕ, Z, S, O, A, T , r, γ

〉
. This

problem formulation follows the same definitions as the regu-
lar MA-POMDP, with the addition of the state transformation
function, ϕ, and the upsampled-state space, Z . Here, the
agents’ joint state is represented by z̄t =

[
ϕ(sit)

]
∈ Z . We

note that the observation and reward that agents receive remain
unchanged. Likewise, the state transition probability density
function is still defined by T : S × A 7→ S . As such, we are
able to warm-start the target policy by pre-training in a simpler
task, πtarget

i (zit) : Z 7→ A. We utilize the Actor-Critic method
described in VII-A to pre-train the target policy within the
source task. Once πtarget

i (zit) has converged, we transfer this
policy to the target task: πtarget

i (sit)← πtarget
i (zit). We continue

training, following the MA-POMDP formulation, as we no
longer need the state transformation function ϕ. We learn the
optimal target policy, π∗

i (s
i
t), by training in the target domain

using the Actor-Critic method described in Section VII-A.

C. Tensor Representation for Team Size Scaling

As learning in the source task is done with less agents,
our method also requires the ability to scale to larger team
sizes. This capability is enabled via our tensor-based state
representation which can be described by the following multi-
dimensional tensor:

(
i, c, sx, sy

)
. Here, the i dimension in-

dexes an agent in the environment, the c dimension corre-
sponds to that agent’s type, and the sx and sy dimensions
correspond to coordinates in the grid. As a brief example,
Agent 0 of Type 1 at grid location (3, 4), would have the
following value: (0, 1, 3, 4) = 1. In our method, this tensor is
processed through convolutional and fully-connected layers,

generating an encoded representation of the agent’s state-
observation for the MARL algorithm. As we treat the first
dimension as the batch-input, and the second dimension as
the channel input to the preprocessing layers, we are able to
scale to larger team sizes without additional parameterization.

V. EXPERIMENTS AND RESULTS

To evaluate the efficacy of our method, we conduct experi-
ments across two MARL domains and three MARL algorithms
with communication. The first domain we use is Predator-
Prey (PP) [22], a homogeneous coordination problem, where
Predator agents with limited vision must find a stationary Prey
and move to its location within a grid world environment.
The second domain we use is Predator-Capture-Prey (PCP)
[21], a heterogeneous coordination problem where agents
maintain different observation and action-spaces. Specifically,
the environment has Capture agents that have an additional
capture_prey action but do not receive any observation
inputs (i.e., blind), and Predator agents with limited vision.
As the Capture agents are not able to observe the Prey’s
location, this requires Predator agents to communicate with the
Capture agents. This team heterogeneity further increases the
complexity of this domain, when compared to PP [22] leading
to increased training times to achieve a target performance, in
the same grid size and total number of agents. Across domains,
the objective is to find/find-and-capture the prey in the least
number of time-steps, respectively. We refer readers to [21]
for further details on the PP and PCP domains.

A. Environment Representation and Baselines

Environment Representation – We utilize the tensor-
based representation (Section IV-C) to represent the state and
observation within these grid-based domains as opposed to the
flattened representation used in the original code-base of Singh
et al. [22]. We provide further details in Section VII-B.

Baselines – We deploy our upsampling method to IC3Net
[22], MAGIC [15], and HetNet [21] to evaluate whether our
method can help scale different MARL algorithms. We use all
methods within the PP [22] domain, and only utilize HetNet
within the PCP [21] domain as it is specifically designed to
handle communication across heterogeneous agents.

B. Transfer Experiments

Here, we present details of our experiments and the metrics
we use to evaluate the efficacy of our upsampling procedure.

Experiment Details – In our experiments, the source tasks
are 5 × 5 environments with 3 total agents: 3 Predator (P)
agents for the PP [22] domain, and 2 Predator (P) and 1
Capture (C) agents in the PCP [21] domain. The target tasks
are 10 × 10 environments with 5 total agents: 5 Predator (P)
agents for the PP domain, and 3 Predator (P) and 2 Capture
(C) agents in the PCP domain. We pre-train the target policy
from scratch, on the source tasks, under the SUMA-POMDP
formulation introduced in Section IV-B. Once the target policy
has converged in the source task, we transfer the policy to the
target task and continue training, without state upsampling. In



(a) 5×5 PP source task. (b) 10×10 PP target task. (c) 5×5 PCP source task. (d) 10×10 PCP target task.

Fig. 2: In Figures 2a – 2d, we display source/target learning curves with respect to estimated aggregate training time as detailed
in Section V-C. We note that in Figures 2b and 2d, the transferred policies are shifted to account for time spent pre-training.

the PP [22] domain, we increase the team size in the target
task simultaneously. In the PCP [21] domain, we do one set of
experiments keeping the team size the same as in the source
task, and another increasing the team size.

C. Evaluation Metrics

We assess two aspects of performance: Q1) Does training
under our SUMA-POMDP formulation affect performance
within the source task? and Q2) What are the benefits obtained
via our policy transfer procedure? 1) is assessed directly
via the performance metric in PP and PCP, steps-taken, by
comparing performance between training from scratch and
training under the SUMA-POMDP formulation. 2) is assessed
via the aggregated training time required for a policy to reach
a target performance and the performance achieved within a
fixed amount of training time.

D. Results

In this section, we discuss the results of our experiments in
reference to Q1) and Q2).

Q1) Pre-training Results – From our results in Figures
2a and 2c, we observe that the target policies, pre-trained
on the source tasks, are able to converge and achieve similar
performance as training from scratch, for IC3Net [22], MAGIC
[15], and HetNet [21] on the PP [22] domain, and for HetNet
[21] on the PCP domain. In Figure 2a, the target policy using
HetNet takes longer training time to converge. However, even
with this difference, the aggregate training time after transfer
is still less compared to training from scratch, as we discuss
in Q2). From these results, we conclude that pre-training the
target policy under our SUMA-POMDP formulation does not
negatively effect learning performance on the source task. As
the target policy is able to achieve convergence on the source
task, it is able to learn knowledge about the domain that can be
leveraged when transferring to the more difficult target task.

Q2) Transfer Results – For the PP target task, we transfer
the IC3Net, MAGIC, and HetNet target policies after pre-
trainining on the source task for 350, 590, and 500 epochs,
respectively. In Figure 2b, we observe that the transferred
policies in the PP domain are able to achieve convergence and
better performance with less aggregate training time, compared
to training from scratch, for all baselines. Specifically, in Table
Ia, we observe that given a fixed amount of training time,
transferred policies are able to achieve up to a 2.68× - 6.99×
performance improvement, compared to training from scratch,
across all baselines. For the PCP target task, we transfer the

Experiment Time (hrs) Performance (Avg. Steps-Taken)
Scratch Transfer

HetNet 10× 10 5P 100.00 189.70 27.13
IC3Net 10× 10 5P 10.00 55.59 20.72
MAGIC 10× 10 5P 30.00 192.61 69.67

(a) Experiments in the homogeneous PP [22] domain.

Experiment Time (hrs) Performance (Avg. Steps-Taken)
Scratch Transfer

HetNet 10× 10 2P/1C 200.00 184.62 30.19
HetNet 10× 10 3P/2C 350.00 199.85 25.34

(b) Experiments in the heterogeneous PCP [21] domain.

TABLE I: Performance in a fixed amount of aggregate training
time as detailed in Section VII-C.

HetNet target policy after 700 epochs of pre-training on the
source task. For this domain, we include experiments where
the same transferred HetNet policy is used to initialize training
with a 2P/1C team (as in the source task), and training with a
larger 3P/2C team. For both experiments, we observe in Figure
2d that the transferred policies are able to achieve convergence
and better performance with less aggregate training time,
compared to training from scratch. Specifically, in Table Ib, we
observe that given a fixed amount of training time, transferred
policies are able to achieve up to a 6.11× - 7.88× performance
improvement, compared to training from scratch, across both
the 2P/1C and 3P/2C tasks. Notably, we observe that the
policies trained from scratch are unable to achieve high-
performance in over 400 hours of training while the transferred
policies are able to within a few hours after transfer.

VI. CONCLUSION

In order to scale MARL algorithms to larger environments
and team sizes, we present a transfer learning method that
leverages learned knowledge from training on a simpler task
with a smaller environment and fewer agents. We introduce the
State-Upsampled Multi-Agent Partially Observable Markov
Decision Process (SUMA-POMDP) problem formulation to
allow pre-training a target policy on these simpler source tasks.
Furthermore, we present a tensor-based state representation
that allows for scaling to larger team sizes. We present
empirical evidence that shows our method is able to achieve
greater performance with significantly less training experience
and time, across multiple MARL algorithms and domains.
Notably, our method allows for policy convergence in complex
problems, providing up to a 7.88× performance gain, while
conventional training from scratch is unable to make progress.



ACKNOWLEDGMENTS

This work is supported by the Laboratory Directed Research
and Development program at Sandia National Laboratories, a
multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell International Inc. for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. This paper de-
scribes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

REFERENCES

[1] Niranjan Balachandar, Justin Dieter, and Govardana Sa-
chithanandam Ramachandran. Collaboration of ai agents
via cooperative multi-agent deep reinforcement learning.
arXiv preprint arXiv:1907.00327, 2019.

[2] Felipe Leno Da Silva and Anna Helena Reali Costa. A
survey on transfer learning for multiagent reinforcement
learning systems. Journal of Artificial Intelligence Re-
search, 64:645–703, 2019.

[3] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv
Batra, Devi Parikh, Mike Rabbat, and Joelle Pineau.
Tarmac: Targeted multi-agent communication. In Inter-
national Conference on Machine Learning, pages 1538–
1546. PMLR, 2019.

[4] Jakob Foerster, Ioannis Alexandros Assael, Nando
De Freitas, and Shimon Whiteson. Learning to com-
municate with deep multi-agent reinforcement learning.
Advances in neural information processing systems, 29,
2016.

[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras,
Nantas Nardelli, and Shimon Whiteson. Counterfactual
multi-agent policy gradients. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

[6] Sven Gronauer and Klaus Diepold. Multi-agent deep
reinforcement learning: a survey. Artificial Intelligence
Review, 55(2):895–943, 2022.

[7] Hodjat Hamidi and Ali Kamankesh. An approach to
intelligent traffic management system using a multi-agent
system. International Journal of Intelligent Transporta-
tion Systems Research, 16(2):112–124, 2018.

[8] Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang,
Xinghai Sun, Han Liu, and Tong Zhang. Grid-wise con-
trol for multi-agent reinforcement learning in video game
ai. In International Conference on Machine Learning,
pages 2576–2585. PMLR, 2019.

[9] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan
Liang. Updet: Universal multi-agent reinforcement learn-
ing via policy decoupling with transformers. arXiv
preprint arXiv:2101.08001, 2021.

[10] Leslie Pack Kaelbling, Michael L Littman, and An-
thony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence,
101(1-2):99–134, 1998.

[11] Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang,
Yi Wu, and Xiaolong Wang. Evolutionary population
curriculum for scaling multi-agent reinforcement learn-
ing. arXiv preprint arXiv:2003.10423, 2020.

[12] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI
Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments.
Advances in neural information processing systems, 30,
2017.

[13] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, and Zhibo
Gong. Modelling the dynamic joint policy of team-
mates with attention multi-agent ddpg. arXiv preprint
arXiv:1811.07029, 2018.

[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–
1937. PMLR, 2016.

[15] Yaru Niu, Rohan Paleja, and Matthew Gombolay. Multi-
agent graph-attention communication and teaming. In
Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pages 964–
973, 2021.

[16] Rongjun Qin, Feng Chen, Tonghan Wang, Lei Yuan,
Xiaoran Wu, Zongzhang Zhang, Chongjie Zhang, and
Yang Yu. Multi-agent policy transfer via task relationship
modeling. arXiv preprint arXiv:2203.04482, 2022.

[17] Jorge Peña Queralta, Jussi Taipalmaa, Bilge Can Pulli-
nen, Victor Kathan Sarker, Tuan Nguyen Gia, Hannu
Tenhunen, Moncef Gabbouj, Jenni Raitoharju, and Tomi
Westerlund. Collaborative multi-robot search and rescue:
Planning, coordination, perception, and active vision.
Ieee Access, 8:191617–191643, 2020.

[18] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder,
Gregory Farquhar, Jakob Foerster, and Shimon Whiteson.
Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning. In International
Conference on Machine Learning, pages 4295–4304.
PMLR, 2018.

[19] Devin Schwab, Yifeng Zhu, and Manuela Veloso. Tensor
action spaces for multi-agent robot transfer learning. In
2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5380–5386. IEEE,
2020.

[20] Esmaeil Seraj and Matthew Gombolay. Coordinated
control of uavs for human-centered active sensing of
wildfires. In 2020 American Control Conference (ACC),
pages 1845–1852. IEEE, 2020.

[21] Esmaeil Seraj, Zheyuan Wang, Rohan Paleja, Daniel
Martin, Matthew Sklar, Anirudh Patel, and Matthew
Gombolay. Learning efficient diverse communication for
cooperative heterogeneous teaming. In Proceedings of
the 21st International Conference on Autonomous Agents
and Multiagent Systems, pages 1173–1182, 2022.

[22] Amanpreet Singh, Tushar Jain, and Sainbayar



Sukhbaatar. Learning when to communicate at
scale in multiagent cooperative and competitive tasks.
arXiv preprint arXiv:1812.09755, 2018.

[23] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning mul-
tiagent communication with backpropagation. Advances
in neural information processing systems, 29, 2016.

[24] Peter Sunehag, Guy Lever, Audrunas Gruslys, Woj-
ciech Marian Czarnecki, Vinicius Zambaldi, Max Jader-
berg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo,
Karl Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

[25] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[26] Richard Szeliski. Computer vision - algorithms and
applications. In Texts in Computer Science, 2011.

[27] Matthew E Taylor and Peter Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10(7), 2009.

[28] Gabriel Villarrubia, Juan F De Paz, Daniel H Iglesia, and
Javier Bajo. Combining multi-agent systems and wireless
sensor networks for monitoring crop irrigation. Sensors,
17(8):1775, 2017.

[29] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao,
Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan,
and Yang Gao. From few to more: Large-scale dynamic
multiagent curriculum learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pages 7293–7300, 2020.

[30] Ronald J Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3):229–256, 1992.

[31] Michael Wooldridge. An introduction to multiagent
systems. John wiley & sons, 2009.

[32] Tianze Zhou, Fubiao Zhang, Kun Shao, Kai Li, Wenhan
Huang, Jun Luo, Weixun Wang, Yaodong Yang, Hangyu
Mao, Bin Wang, et al. Cooperative multi-agent transfer
learning with level-adaptive credit assignment. arXiv
preprint arXiv:2106.00517, 2021.

[33] Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer
learning in deep reinforcement learning: A survey. arXiv
preprint arXiv:2009.07888, 2020.



VII. APPENDIX

A. Actor-Critic (AC) Methods

We utilize an Actor-Critic (AC) method to learn an Actor
policy, πiθ(a

i
t|sit), parameterized by θ. At every time-step t,

the Actor specifies the action ait that an agent i must take,
while in the state sit, in order to maximize the expected
future discounted reward. We apply gradient descent on the
parameters of the Actor, based on the on a Critic Q(sit, a

i
t).

The Critic is a state-action value function that assesses the
value of the actions taken by the Actor [25]. By utilizing a
centralized Critic [12], we are able to approximately solve
the credit-assignment problem in our MARL formulation
[5]. Our goal is to maximize an agent’s expected reward
J(θ) = Eπi

θ

[
Rt |πiθ

]
. Utilizing Rt is an estimate of Q(sit, a

i
t)

[14], and a learned state-value function V ψ(sit), parameterized
by ψ, as an approximate baseline function to reduce variance
in the policy gradient [30], we obtain the following unbiased
gradient: ∇θJ(θ) = Eπi

θ

[
∇θ log πiθ(ait|oit)

(
Rt − V ψ(sit)

)]
.

B. Additional Environment Details

Within the PP [22] and PCP[21] environments, we represent
the state with the same tensor-based representation detailed in
Section IV-C:

(
i, c, sx, sy

)
. The cardinality of the i dimension

is determined by the number of agents in the environment and
the cardinality of the sx and sy dimensions are determined
by the size of the environment. We note that for the state’s
tensor, the size of the c dimension is 1. Additionally, an agent’s
observation is encoded as m ×m grid representation, where
m is the range of the predator’s vision. An agent’s observation
tensor can also be represented by the same multi-dimensional
tensor. The dimensions are defined the same as in the state
tensor-based representation, however the cardinality of the
dimensions sx and sy are of m. Furthermore, the dimension
c, representing the agent type, is of cardinality two for the PP
environment and three for the PCP environment.

C. Additional Training Details

Training Resources – All of our experiments are run on a
GPU cluster at the Georgia Institute of Technology with two
64-core AMD 7452 CPUs, eight Nvidia A40 48GB GPUs, and
512 GB of RAM. For each experiment, we only utilize the
CPU for training and distribute the training over 4 processes.

D. Additional Details on Evaluation Metrics

Time Estimation – Each experiment was run once, utilizing
a fixed random seed, until convergence or a maximum time
threshold was reached. We estimate training time required
for training each framework, under the same domain and
experiment settings, by computing the average time-per-epoch
over 100 epochs of training on the same machine. We multiply
this by the number of training epochs across every experiment
to generate the time data seen in Figures 2a-2d. We summarize
these computed time statistics in Table II. We note that there is
not a large difference in the average time-per-epoch between
training a policy on the source task from scratch and training

Experiment Avg. time per epoch (sec)
Scratch Transfer

HetNet 5× 5 3P 199.96 ± 0.73 -
HetNet 5× 5 3P US ×2 229.45 ± 0.66 -
IC3Net 5× 5 3P 47.72 ± 0.24 -
IC3Net 5× 5 3P US ×2 50.03 ± 0.25 -
MAGIC 5× 5 3P 98.69 ± 0.52 -
MAGIC 5× 5 3P US ×2 105.89 ± 0.49 -
HetNet 10× 10 5P 580.76 ± 2.44 439.49 ± 4.93
IC3Net 10× 10 5P 143.13 ± 0.51 132.62 ± 0.87
MAGIC 10× 10 5P 313.80 ± 1.16 256.24 ± 0.79

(a) Experiments in the homogeneous PP [22] domain.

Experiment Avg. time per epoch (sec)
Scratch Transfer

HetNet 5× 5 2P/1C 490.64 ± 2.46 -
HetNet 5× 5 2P/1C US ×2 315.05 ± 0.87 -
HetNet 10× 10 2P/1C 784.00 ± 5.45 791.37 ± 5.05
HetNet 10× 10 3P/2C 835.35 ± 7.57 846.94 ± 3.44

(b) Experiments in the heterogeneous PCP domain.

TABLE II: Time related statistics for all experiments. We
estimate the average amount of training time per epoch (±
Standard Error) over 100 epochs of training on the same
machine.

the target policy on the source task with state upsampling.
(e.g. Table IIa Row 1 and Row 2). Likewise, there is not a
large difference in the average time-per-epoch for a policy
trained from scratch on the target task, and a policy transferred
to the target task after pre-training (e.g. Table IIb Row 3,
scratch v.s. transfer). As the training times are similar, we
are able to make fair comparisons in Figure 2 and conclude
that the performance improvement in training time is due to
the knowledge transfer enabled by our method.

Performance Comparison – In Table I, we compare train-
ing performance between a policy trained from scratch on the
target task, and a policy that is transferred to the target task
after pre-training on the source task. To compute this metric,
we take the average performance (measured by the average
steps-taken by an agent) during a specified fixed hour of
training. As the total training time can vary across algorithms
and task configurations, we choose an appropriate fixed hour
for each calculation.


	Introduction
	Related Work
	Problem Formulation
	Method
	State Upsampling Transformation
	State-Upsampled Multi-Agent POMDP (SUMA-POMDP)
	Tensor Representation for Team Size Scaling

	Experiments and Results
	Environment Representation and Baselines
	Transfer Experiments
	Evaluation Metrics
	Results

	Conclusion
	Appendix
	Actor-Critic (AC) Methods
	Additional Environment Details
	Additional Training Details
	Additional Details on Evaluation Metrics


